What

 $2 s$Qametogenesis?

Gametogenesis is a process by
which diploid or haploid cells undergo cell
division and differentiation to form mature
haploid gametes.

gamelogencris

> occurs
by meiotic division of diploid gametocytes into various gametes, or by mitotic division of haploid gametogenous cells.

The existence of a multicellular, haploi d phase in the life cycle between meiosis and gametogenesis is also referred to as alternation of generations.

Gamelogenefis is simply...

-the process of gametes formation

- It occurs in the gonads (ovary or testis)

Gamelogeneris is divided into

four phases

D I. Extra-gonadal origin of primordial germ cells
b 3. Meiosis

- 4. Structural and functional maturation of the

2. Proliferation of germ cells by mitosis

Coniol celly are the designation given to germ cells before they enter meiosis.
-replicate mitotically.

- genetically identical to the original zygote.
-When they begin meiosis, they are called spermolocyles and oo̊eyler.

gamstogsncrib

spermatogenesis (m๑l@)

oogenesis (fomalc)

SPERMATOGENESIS

Spermalogenesis

$>$ is the process of formation of the male germ cells (sperm formation).
$>$ It occurs in the seminiferous tubules of the testis.
$>$ It is thread-like in shape.

>Spermalogeneris occurs from puberty to old age, producing immense numbers of spermatozoa at an average rate of 1.5 million spermatozoa per minute.
\Rightarrow The sperm will mature in the epidiymir, nourished by sertoli cells for up to io weeks.
\rightarrow Humans aged 13-90 can make I billion sperm a
$>$ The sertoli cells are supporting cells that have several functions.
$>$ They form the blood-testes barrier: nutrients, and circulating substances do not directly reach the germ cells
$>$ The sertoli cells determine which substances reach the germ cells
$>$ The spermatogonia are outside the blood-testis barrier.
$>$ They also produce antigen-binding proteins, which are necessary for spermiogenesis (morphological development of spermatids to spermatozoa).

Finss meiotic division

$>$ Spermatogenesis is the process by which male primary sperm cells undergo meiosis, and produce a number of cells termed spermatogonia, from which the primary spermatocytes are derived.
$>$ Each primary spermatocyte divides into two secondary spermatocytes, and each secondary spermatocyte into two spermatids or young spermatozoa.
\Rightarrow These develop into mature spermatozoa, also known as sperm cells.
$>$ The primary spermatocyte gives rise to two cells, the secondary spermatocytes, and the two secondary spermatocytes by their subdivision produce four spermatozoa.
$>$ It is an intermediary male gametogonium (a kind of germ cell).
$>$ Diploid in number: 44 autosomes and $\underline{2}$ sex cells
$>$ It is very small and under the process of development.
$>$ Undergoing Gr-S.

Primary Spermatoeykes

$>$ diploid in number:

44 autosomes and 2 sex cells

$>$ Increases in size
$>$ Undergoing G2.

Sceondary Sparmalocyles

$>$ Haploid in number: 22 autosomes (double stranded) and I sex cell each.
$>$ Can see the cleavage furrow
$>$ Undergoing Meiosis I (Reduction Division)
$>$ Chromosomes are reduced into half number.

Spermatid

$>$ Haploid in number:
22 (single stranded) autosomes and 1 sex cell.
> Undergoing Meiosis II
(Equational Division)

Sparmatozoo

$>$ It is a motile sperm cell, or moving form of the haploid cell that is the male gamete.
$>$ It joins an ovum to form a zygote.
$>$ Matured Sperm Cell are ready to
fertilized the egg.

Oogeneris

$>$ Oogenesis is the process of formation of the female germ cells (egg formation).

$>$ It happens in the Ovary.

$>$ It is Spherical in shape.

$>$ Oogenesis begins in early foetal life
$>$ All oocytes formed in females are produced during foetal life. Many of them degenerate with time and at birth the ovaries contain about 2 million oocytes.
$>$ All the oocytes go into meiotic arrest when they reach the first meiotic division during foetal life.
$>$ The primary oocytes remain in the prophase of the first meiotic division until the time of puberty, when they are gradually released to complete meiosis at regular intervals known as the ovarian cycle.
$>$ On the average only one oocyte matures during each cycle, which occurs at approximately monthly intervals, so that the anat of oocytes to be ovulated is about 500 oocytes in a

Oogonium/Oogonia

$>$ Diploid in number: ad autosomes and 2 sex cellls
\Rightarrow It is very small and under the process of development.

DCherkeoing GroS.
$>$ It is a cell whose prinary function is to divide by the process of meiosis.
\rightarrow It is also diploid in number: 44 autosomes and 2 sex cells

- Increases in size
$>$ Undergaing G_{2}.
\rightarrow Undergoing Meiosis I (Reduction Division).
$>$ Chromosomes are reduced into its half number.
$>$ Begins during embryonic development, but halts in the diplotene stage of prophase I until puberty.
\triangle Primary oocytes that continue to develop in each menstrual cycle, however, symapsis occurs and tetrads form, enabling chromosomal crossover to occur.
\rightarrow Result of meiosis $\mathbb{I}_{\text {, the }}$ primaryy oocyte has now developed into the secmederen oocyte and the first polar body.

(oobid)OVum

\triangle Inmmediatelly after meiosis
I, the happloid secondary oocyte initiates meiosis III (Equational Division). Δ This process is also hallted at the metaphase III stage wnail fertiilization, if such should ever occur. Δ When meiosis III has completed, an ootid arod another polar body have now been created:

Pollar Bodisa

Both polar bodies disintegrate at the end of Meiosis II, leaving only the ootid, which then eventually undergoes maturation into a mature ovum.
-The function of forming polar bodies is to discard the extra haploid sets of chromosomes that have resulted as a consequence of meiosis.

SPERMATOGENESIS

OOGENESIS

